名人
  • 舞曲
  • 视频
  • 歌词
  • 简谱
  • 铃声
  • 名人
  • 文章
当前位置:首页 - 名人 - 南京大学 - 尤建功
尤建功

尤建功

尤建功﹐男﹐1963年3月出生﹐江苏六合人。1983年毕业于徐州师范学院,1989年获北京大学理学博士学位,1989-1991年在南京大学做博士后,1991年起历任南京大学讲师、副教授、教授、博士生导师、数学系主任。曾在德国科隆大学和慕尼黑工大做洪堡学者;曾访问瑞士苏黎世高工(ETH)数学研究所等多所国外著名大学。在达芬方程的稳定性,KAM理论,哈密顿偏微分方程的拟周期运动等方面做出了一系列深刻的工作。曾获得国家杰出青年基金、香港求是科技基金会杰出青年学者奖、中国高校科技进步奖一等奖(排名第二)、第六届江苏省青年科技奖、国家自然科学二等奖(排名第三)。现承担国家基金委重点项目和国家重大基础研究规划项目。现任南开大学陈省身数学研究所教授、博士生导师,民盟中央委员。
展开

人物经历

曾任南京大学数学系主任、教授、博士生导师。

1983年毕业于徐州师范学院﹔

1986年获南京大学理学硕士学位﹔

1989年获北京大学理学博士学位后到南京大学任教。

1994年2月8日访问瑞士苏黎世高工(ETH)数学研究所﹔

尤建功

1995年至1997年受德国洪堡基金会资助在科隆大学和慕尼黑工业大学做合作研究﹔

1998年2月至8月在罗马第三大学做访问教授;

1998年成为国家非线性科学攀登项目组正式成员﹔

1999年获得国家杰出青年基金﹔

2000年成为国家重点基础研究发展规划项目组(非线性科学)成员;

2016年9月,担任南开大学陈省身数学研究所教授、博士生导师。

任免信息

2017年12月,当选中国民主同盟第十二届中央委员会委员。

研究领域

主要是动力系统﹐特别是Hamilton动力系统。研究成果主要集中在KAM理论及其在常微分方程和偏微分方程中的应用方面﹔对低维环面的KAM理论做出了重要发展﹐在第一Melnikov非共振条件下得到了不变环面的存在性﹐并用于研究了国际上非常活跃的Hamilton偏微分方程的拟周期解问题﹔研究成果否定了1994年菲尔茨奖获得者Bourgain认为KAM理论不能用于重法频率的看法﹔解决了KAM理论创始人之一Moser关於摆方程Lagrange稳定性的一个公开问题﹔受到了国际同行的重视和好评。

学术论文

2.KAM theory for lower dimensional tori of nearly integrable Hamiltonian systems, Progress in Nonlinear Analysis, edited by K-C. Chang and Y. Long, World Scientific, 2000, 409-423.

3.KAM tori for 1D nonlinear wave equations with periodic boundary condition, Communications in Mathematical Physics., Vol. 211(2), 497-525, 2000(with l, Chierchia).

4.Perturbations of lower dimensional tori for Hamiltonian systems, Journal Of Differential Equations, Vol. 152, 1-29, 1999.

5.A KAM theorem for hyperbolic type degenerate lower dimensional tori in Hamiltonian systems, Communications in Mathematical Physics, Vol. 192. 145-168, 1998.

Almost reducibility and non-perturbative reducibility of quasi-periodic linear systems. Invent. Math. 190 (2012), no. 1, 209u2013260. Article; E-Journal.  X. Hou and J. You

An infinite dimensional KAM theorem and its application to the two dimensional cubic Schrödinger equation. Adv. Math. 226 (2011), no. 6, 5361u20135402. Article; E-Journal.  J. Geng, X. Xu and J. You

Persistence of the non-twist torus in nearly integrable Hamiltonian systems. Proc. Amer. Math. Soc. 138 (2010), no. 7, 2385u20132395.Article; E-Journal.  J. Xu and J. You

Local rigidity of reducibility of analytic quasi-periodic cocycles on U(n). Discrete Contin. Dyn. Syst. 24 (2009), no. 2, 441u2013454.Article; E-Journal.  X. Hou and J. You

Corrigendum for the paper: "Two-dimensional invariant tori in the neighborhood of an elliptic equilibrium of Hamiltonian systems" in Acta Mathematica Sinica, English Series August 2009, Volume 25, Issue 8, pp 1363-1378. Article  H. Lu and J. You

Two-dimensional invariant tori in the neighborhood of an elliptic equilibrium of Hamiltonian systems. Acta Mathematica Sinica, English Series August 2009, Volume 25, Issue 8, pp 1363-1378. Article; E-Journal.  H. Lu and J. You

Full measure reducibility for generic one-parameter family of quasi-periodic linear systems. J. Dynam. Differential Equations 20 (2008), no. 4, 831u2013866. Article; E-Journal.  H. He and J. You

The rigidity of reducibility of cocycles on SO(N ,R). Nonlinearity 21 (2008),no. 10, 2317u20132330. Article; E-Journal.   X. Hou and J. You

Diophantine vectors in analytic submanifolds of Euclidean spaces. Sci. China Ser. A. 50 (2007), no. 9, 1334u20131338. Article; E-Journal.  R. Cao and J. You

Corrigendum for the paper: "Invariant tori for nearly integrable Hamiltonian systems with degeneracy" [Math. Z. 226 (1997), no. 3, 375u2013387] by Xu, You, and Q. Qiu. Math. Z. 257 (2007), no. 4, 939. Article; E-Journal.  J. Xu and J. You

Gevrey-smoothness of invariant tori for analytic nearly integrable Hamiltonian systems under Rüssmann’s non-degeneracy condition. J. Differential Equations 235 (2007), no. 2, 609u2013622. Article; E-Journal.  J. Xu and J. You

KAM Tori for Higher Dimensional Beam Equation with Constant Potentials, Nonlinearity 19 (2006), no. 10, 2405u20132423. Article; E-Journal.  J. Geng and J. You

The Existence of Integrable Invariant Manifolds of Hamiltonian Partial Differential Equations, Discrete and Continuous Dynamical Systems 16 (2006), no. 1, 227u2013234. Article; E-Journal.  R.Cao and J. You

An Improved Result for Positive Measure Reducibility of Quasi- periodic Linear Systems, Acta Mathematica Sinica (English series) 22 (1), 2006, 77-86. Article; E-Journal.  H. He and J. You

A KAM Theorem for Partial Differential Equations in Higher Dimensional Space, Communications in Mathematical Physics, Vol.262(2), 2006, 343-372. Article; E-Journal.  J.Geng and J.You

Umbilical Torus Bifurcations in Hamiltonian Systems, J. Differential Equations, Vol. 222(1), 2006, 233-262. Article; E-Journal.  H. Broer, H. Hanssmann and J. You

A simple proof of diffusion approximations for LBFS re-entrant lines, Oper. Res. Lett., 34(2006), no. 2, 199u2013204. Article; E-Journal.  J. Yang, J.G. Dai, J. You and H. Zhang

Quasi-Periodic Solutions for 1D Schrödinger Equations with Higher Order Nonlinearity, SIAM J. Mathematical Analysis, 36(2005), 1965-1990. Article; E-Journal.  Z. Liang and J. You

Bifurcations of Normally Parabolic Tori in Hamiltonian Systems, Nonlinearity, 18 (2005) 1735-1769. Article; E-Journal.  H. Broer, H. Hanssmann and J. You

A KAM Theorem for One Dimensional Schrödinger Equation with Periodic Boundary Conditions, J. Differential Equations, 209, 2005, 1-56. Article; E-Journal.  J. Geng and J. You

KAM tori of Hamiltonian perturbations of 1D linear beam equations, J.Math.Anal.Appl., 277, 2003, 104-121. Article; E-Journal.  J. Geng and J. You

A Symplectic Map and its Application to the Persistence of Lower Dimensional InvariantTori, Science in China, 45(5), 2002,598-603. Article; E-Journal.

获奖记录

曾获得国家杰出青年基金、香港求是科技基金会杰出青年学者奖、中国高校科技进步奖一等(排名第二)、第六届江苏省青年科技奖、国家自然科学二等奖(排名第三)。

更新日期:2024-11-23

免费下载联系我们下载帮助免责声明版权声明用户协议隐私协议撤稿声明作品投搞关于我们常见问题网站地图

声明:网站内容全部来自于网络公开搜索结果,不保证100%准确性,仅供参考,如侵犯到您的权益,请提供版权证明来信通知,我们72小时内删除!

本站仅仅提供一个观摩学习的环境,非赢利性网站,将不对任何资源负法律责任,不接受任何赞助和广告!

删稿邮箱: teheyi@foxmail.com

Copyright @ 2023-2024 www.teheyi.com All Rights Reserved